Investigation of Random Telegraph Noise in Gate-Induced Drain Leakage and Gate Edge Direct Tunneling Currents of High-k MOSFETs

Ju-Wan Lee, Byoung Hun Lee, Senior Member, IEEE, Hyungcheol Shin, Senior Member, IEEE, and Jong-Ho Lee, Senior Member, IEEE

Abstract—Random telegraph noise (RTN) in gate-induced drain leakage (GIDL) and gate edge direct tunneling (EDT) leakage currents under GIDL bias conditions was characterized in MOSFETs with a high-k gate dielectric for the first time. The RTNs were analyzed through systematic measurement and calculation. The results indicate that a high-current state in a GIDL current can be attributed to electron capture due to thermal emission. However, electron emission from a trap was mainly affected by gate bias. Both capture and emission times in the RTN of the EDT current had gate bias dependence. Moreover, multilevel RTN waveforms were detected in a device, and our analysis indicated that the multilevel RTN is the result of the combination of the RTNs of the GIDL and EDT currents. The analysis also indicated that two independent traps in the high-k gate dielectric can produce a four-level RTN in the GIDL current. This paper provides the fundamental physics required to understand such leakages in nanoscale MOSFETs and devices that utilize band-to-band tunneling.

Index Terms—Edge direct tunneling (EDT), gate-induced drain leakage (GIDL), high k, random telegraph noise (RTN).

I. INTRODUCTION

Random telegraph noise (RTN) caused by carrier capture and emission at electron traps has been studied in MOSFETs [1]–[4]. The RTN in carbon nanotube FETs has also been studied [5], [6]. Most of them have been characterized for FETs with a SiO$_2$ gate dielectric. Recently, the RTN in high-k FETs has also been studied [7], [8]. Drain current (I_D) fluctuations as a result of single-hole trapping in HfSiON high-k gate dielectric p-channel FETs (pFETs) have experimentally been investigated and compared with those in SiO$_2$ gate dielectric pFETs [7]. In addition, the RTN in the gate leakage current of n-channel FETs (nFETs) with a HfSiO high-k gate dielectric has been reported [8]. In that work, the authors mentioned that electrons in the body are able to tunnel directly into the gate dielectric and move to the gate. However, electron tunneling from the drain and/or the source to the gate had not been considered. Until now, most studies on RTN have focused on the channel current of MOSFETs, and the RTN in the gate-induced drain leakage (GIDL) current of high-k or SiO$_2$ gate dielectric FETs has not previously been reported. Nowadays, understanding band-to-band tunneling (BTBT), which is the main physical origin of GIDL, is important in dynamic random access memory (DRAM) cells [9], flash memory cells [10], and tunneling FETs (TFETs) [11]. Since GIDL in DRAM cells is a major component of the total leakage [9], it needs to be well understood. Furthermore, nonvolatile memory cells that utilize the GIDL current have been reported and have shown excellent performance [10]. Recently, TFETs that achieve sub-60-mV/dec swings by using BTBT have been reported [11]. Considering these advances, it was timely to study and understand the RTN in the GIDL current. In measuring GIDL, there may be a concurrent gate edge direct tunneling (EDT) leakage current that flows between the gate and the drain (or the source) overlapped by the gate [12], [13]. The EDT of electrons from the gate to the underlying n-type drain extension has been examined in off-state n-channel MOSFETs having a ultra-thin gate oxide [13]. EDT is more pronounced for thin gate oxides, and EDT affects the GIDL current measured at the drain terminal. Therefore, it is imperative to check the contribution from EDT under GIDL bias conditions.

In this paper, the RTN in I_D, I_B, and I_G of HfSiON high-k gate dielectric nFETs is investigated through systematic experimentation and calculation. First, we elucidate the two-level RTN in the drain current by GIDL only or EDT only in terms of capture probability with gate bias, trap depth, and temperature. In addition, we characterize the multilevel RTN in the drain current and physically analyze the electron capture and emission process. In this paper, the drain current is a GIDL and/or EDT current but is not a channel current.

II. DEVICE FABRICATION

For the experimental work, we used nFETs with a high-k gate dielectric. The HfSiON high-k dielectric was deposited using an atomic layer deposition (ALD) method after chemical cleaning to form a SiO$_2$ interfacial layer (IL), as previously described [14]. The concentration of HfO$_2$ used during
deposition was approximately 20%. The high-k dielectrics were nitrided using a plasma nitridation process and annealed to densify the film. Then, TiN electrodes were deposited using an ALD method. The resulting gate stack comprised a TiN gate electrode, a 2.7-nm HfSiON high-k layer, and a SiO2 IL. The equivalent oxide thickness of the IL was ~0.6 nm. After the gate stack process, a CMOS process that included a lightly doped drain with halo implantation, 1000 °C rapid thermal annealing, CoSi2, and a Ti/TiN/W contact scheme were used to fabricate well-controlled short-channel devices. The transistors investigated had a gate width of 10 μm and a gate length of 0.06–0.5 μm.

III. RESULTS AND DISCUSSION

RTN fluctuations in \(I_D, I_B, \) and \(I_G \) were measured under GIDL bias conditions. These are measured one after the other due to the limitation for measuring three currents at the same time and plotted to the same time interval. The \(V_G, V_D, \) and \(V_B \) that were applied were \(-0.3, +1.5, \) and 0 V, respectively, for nFETs for the measurement of GIDL. We first checked the effect on GIDL from the n+-p junction diode (n+ drain to p-body) and determined that the junction leakage measured at a \(V_D \) of 1.5 V and a \(V_B \) of 0 V was negligible (< 10 pA) compared to the GIDL current (> 50 nA).

During GIDL measurement, an electron may be detrapped or trapped. Such trapping would take place inside the gate dielectric on the drain that is overlapped by the gate region. The trapping and detrapping of an electron can produce variation in the surface potential in the n+ drain overlapped by the gate and thus result in RTN in the GIDL current. Such RTN in GIDL currents can simultaneously be detected in both drain and body currents. Under GIDL bias conditions, the high electric field in the dielectric between the gate and the drain produces the gate leakage current. If there is an active trap along the leakage path, electrons can be trapped or detrapped, which simultaneously produces RTN in \(I_D \) and \(I_B \).

Fig. 1(a) and (b) shows the measured \(I_D, I_B, \) and \(I_G \) under GIDL bias conditions of \(V_{GS} = -0.3 \) V, \(V_{GB} = -0.3 \) V, and \(V_{DS} = +1.5 \) V in nFETs. The gate lengths \(L_g \) in Fig. 1(a) and (b) are 0.3 μm and 0.08 μm, respectively. The \(\Delta I_G, \Delta I_D, \) and \(\Delta I_B \) terms represent the current fluctuations due to the RTN in \(I_G, I_D, \) and \(I_B \), respectively. \(I_D \) is equal to the sum of \(I_B \) (consisting mainly of GIDL current) and \(I_G \) (the EDT leakage current). Most of the \(I_G \) is the result of the tunneling current that flows between the gate and the drain overlapped by the gate, because \(V_{GD} \) (~1.8 V) is much larger than \(V_{GS} \) (~0.3 V) and \(V_{GB} \) (~0.3 V). The tunneling currents from the gate to the source and to the channel are less than 10 and 20 pA, respectively.

In Fig. 1, two samples in the same wafer showed different characteristics. In Fig. 1(a) (sample 1), \(I_D \) and \(I_B \) show RTN, and the \(\Delta I_D \) resulting from the RTN is almost the same as \(\Delta I_B \). However, there is no RTN in \(I_G \). Therefore, it appears that GIDL is a main cause of the RTN. Electron-hole pairs are generated in the n+ drain overlapped by the gate; the electrons go to the drain terminal, and the holes move to the body along the surface of the drain. Here, a trap with a captured electron increases the vertical electric field in a localized surface area and increases GIDL as a result, which means that the high current level in the RTN waveform reflects an electron-captured state. Thus, a low current level in the RTN waveform can be explained by electron emission. A trap with a detrapped electron in a gate dielectric reduces the vertical electric field, resulting in a decrease in the GIDL current. Thus, the trapping and detrapping of an electron produces RTN in the GIDL current.

In Fig. 1(b) (sample 2), \(I_D \) and \(I_G \) show RTN, and the \(\Delta I_D \) is nearly the same as \(\Delta I_G \). However, there is no RTN fluctuation in \(I_B \), which indicates that there is no active trap to generate RTN in the GIDL current. This result suggests that a trap in the gate dielectric can trap and detract electrons while the EDT current is flowing, which is the main cause of RTN. Here, a trap with a captured electron hinders the electron flow from the gate in a localized area and slightly decreases \(I_G \), which leads to the low current level in RTN waveform. The detrapping of the electron (electron emission) results in the \(I_G \) returning to an undisturbed value, which is the high current level in RTN waveform. The trapping and detrapping process generates RTN in \(I_G \) and \(I_D \). In Fig. 2(a), the dependence of capture time \((\tau_c) \) and emission time \((\tau_e) \) on the gate voltage in samples 1 and 2 of Fig. 1 is shown. In sample 1, \(\tau_e \) is independent of the gate voltage because an electron from the valence band of the high-k dielectric is thermally emitted to a detrapped trap. However, the \(\tau_e \) of sample 1 increases with increasing \(V_{GS} \), which indicates that electron detrapping becomes more difficult as \(V_{GS} \) increases. This can be explained using two energy band diagrams (see Fig. 2 insets) to depict the behavior of electron detrapping with \(V_{GS} \). Generally, a trap energy \((E_T) \) that is similar to Fermi energy \((E_F) \) actively contributes to low-frequency noise.

Now, assume that \(E_T \) is slightly higher than \(E_F \) when the \(V_{GS} \) is low (sample-1 left inset). As \(V_{GS} \) increases, \(E_T \) becomes slightly lower than \(E_F \) (sample-1 right inset). Thus,
with increasing V_{GS}, the probability of detrapping of a captured electron decreases because of a decrease in the $E_T - E_F$, which results in an increasing τ_e. In sample 2, τ_e increases with increasing V_{GS}, which means that the captured electrons are mainly detrapped not by thermionic emission but by the electric field. It is very difficult to emit an electron from a trap to the conduction band of a high-k dielectric because $E_{C, high-k} - E_T$ is much larger than $E_T - E_{V, high-k}$ in our samples. Here, $E_{C, high-k}$ and $E_{V, high-k}$ represent the conduction band and valence band energies of the high-k dielectric, respectively. As V_{GS} increases, $E_T - E_F$ slightly decreases, as shown in the sample-2 inset, which, in turn, decreases the probability of electron emission from a trap to the drain. In contrast, the τ_c of sample 2 decreases with increasing V_{GS}. Then, $E_T - E_F$ slightly decreases, as shown in the τ_e explanation of sample 2, which, in turn, increases the capture probability of the electron from the drain to a trap. Fig. 2(b) shows the $\ln(\tau_c/\tau_e)$ of the RTN in samples 1 and 2 versus V_{GS}. The trap depth (x_T) can be obtained by using a conventional method [2] and by considering the different dielectric constants of the SiO$_2$ IL and the HfSiON high-k gate dielectric [15]. Since x_T's for samples 1 and 2 are 1.3 and 0.78 nm, respectively, both traps are located in the HfSiON layer. The insets show the samples’ energy band diagrams, including x_T.

Fig. 3(a) and (b) shows RTN waveforms of I_D’s for samples 1 and 2, respectively, in a time domain as a parameter of temperature (T). Here, the same bias as that in Fig. 1 is applied to samples 1 and 2. As T increases, both I_D and ΔI_D increase because the GIDL currents are increased due to the trap-assisted generation of electron-hole pairs [16] and direct tunneling gate currents are increased due to the
thermionic-type emission current [17]. Capture and emission events happen more frequently with increasing T in both samples because the electrons can easily surpass the barrier for capture and emission. It is interesting to note that the high-current portion of RTN in GIDL (sample 1) significantly increases with increasing T. As mentioned in the explanation of Fig. 2(a), thermionic emission dominates the capture process in a trap concerning the GIDL current. As T increases, the thermionic emission from the valence band of the gate dielectric becomes easier; thus, a trap captures an electron more frequently, which leads to the larger portion of high-current state in sample 1.

Differently, in sample 2, the ratio of high- and low-current states is similar with T because both τ_c and τ_e are strongly dependent on V_{GS}. Fig. 3(c) shows the dependence of τ_c and τ_e on T, and the activation energies extracted from these data. For a trap in sample 1, the capture activation energy (0.28 eV) is much larger than that (0.11 eV) for emission. In contrast, although the trap in sample 2 has larger capture activation energy (0.24 eV) than that (0.19 eV) for emission, the energy difference is relatively small.

In Fig. 4(a) and (b) shows fluctuations in waveforms over time in I_D, I_B, and I_G in nFETs under the same GIDL bias conditions as shown in Fig. 1. These are measured one after the other due to the limitation for measuring three currents at the same time and plotted to the same time interval. L_g’s in Fig. 4(a) and (b) are 100 and 75 nm, respectively. The device (sample 3) in Fig. 4(a) has RTN in both GIDL and EDT currents because I_G and I_B exhibit a two-level RTN. Since I_D consists of the sum of I_G and I_B, we can expect a four-level RTN in I_D. However, a three-level RTN pattern is depicted in I_D. The ΔI_G is nearly the same as ΔI_B at the V_{GS} of -0.3 V, which is why the three-level RTN is observed. If we change V_{GS}, then the ΔI’s for both currents would be different, resulting in a four-level RTN. Note that the RTN in I_B changed more frequently than that in I_G and that the RTN in I_D reflects the waveforms in I_G and I_B.

In Fig. 4(b), the nFET (sample 4) shows four levels of RTN in both I_B and I_D but no RTN in I_G. Because there is no RTN in I_G, there is no trap for the RTN in the EDT current. The four-level RTN in sample 4 is attributed to the presence of two independent traps that affect the GIDL current. The ΔI’s in I_D...
shows the vertical positions of the two traps.

are nearly the same as those in I_B. In both I_D and I_B, the ΔI of one trap (trap 1; $\Delta I = 0.5$ nA) is larger than that of the other trap (trap 2; $\Delta I = 0.35$ nA). The complex RTN observed in Fig. 4 was analyzed by examining sample 3 in more detail.

Fig. 5(a) shows the dependence of τ_c and τ_e on V_{GS} for the RTNs in I_B and I_G of sample 3. For the RTN of I_B (the mainly GIDL current) of sample 3, τ_c is independent of the V_{GS}, as shown in the left panel of Fig. 5(a), thus indicating that an electron is captured in the trap by thermionic emission, as was also indicated in the left panel of Fig. 2(a). Furthermore, the left panel of Fig. 5(a) shows that τ_c increases with increasing V_{GS}; such behavior can be explained by the same rationale as that used for sample 1. The right panel of Fig. 5(a) shows that the behavior of τ_e and τ_c with V_{GS} for the RTN of the EDT current (I_G) is similar to that in sample 2 in which RTN is only present in the EDT current. Fig. 5(b) shows the ln(τ_c/\tau_e) versus V_{GS} for the RTNs in I_B and I_G of sample 3. The χ_T's for the traps were extracted using the method in [2] and [15], and the results show that the trap responsible for the RTN in GIDL is located in the high-k dielectric layer ($\chi_T = 0.783$ nm). The IL includes the trap ($\chi_T = 0.05$ nm) that affects the RTN in the EDT current. The insets in Fig. 5(b) show energy band diagrams, including χ_T. From the results of sample 3 in Fig. 4(a), which shows RTNs in the GIDL and EDT currents, we understand that the RTN in I_D comes from a combination of the RTNs in the GIDL and EDT currents. Fig. 5(c) shows the ΔI’s in the RTNs of the GIDL and EDT currents versus V_{GS}. At a V_{GS} of -0.3 V, both RTNs are similar, which produces a three-level RTN in I_D, as was also shown in Fig. 4(a). As the V_{GS} increases, the ΔI of the GIDL current decreases more rapidly compared to the ΔI of the EDT current. At V_{GS} values other than -0.3 V, the ΔI’s in both RTNs are different, which results in a four-level RTN.

Fig. 6 shows ln(τ_c/\tau_e) versus V_{GS} for the RTNs in I_B or I_D of sample 4, which had two independent traps that were responsible for producing the four-level RTN in the GIDL current. The behavior of τ_c and τ_e versus V_{GS} in the RTN for each trap is quite similar to that for the RTN in the GIDL current shown in Fig. 2(a). The extracted χ_T‘s for traps 1 and 2 are 0.55 and 1.164 nm, respectively. The inset in Fig. 6 schematically

IV. CONCLUSION

Two-level and four-level RTNs have been measured in the GIDL current for the first time in MOSFETs containing a HISON high-k gate dielectric and have been analyzed through experimental measurement and calculation. Under GIDL bias conditions, the EDT leakage current flows through the gate dielectric between the gate and the drain overlapped by the gate and produces RTN if there is a trap within the dielectric. The mechanism of carrier capture and emission for the RTNs in both GIDL and EDT currents have been physically analyzed, and multilevel RTNs, which come from the RTNs in the GIDL and EDT currents of a FET, have been investigated. This paper will improve the understanding of devices that utilize the BTBT process and help the analysis of leakage currents in future devices.

REFERENCES

Ju-Wan Lee was born in Daegu, Korea, on June 24, 1983. He received the B.S. and M.S. degrees in electrical engineering and computer science from Kyungpook National University, Daegu, Korea, in 2007 and 2009, respectively. He is currently working toward the Ph.D. degree with the School of Electrical Engineering and Computer Science and Inter-University Semiconductor Research Center, Seoul National University, Seoul, Korea. His research interests include the sub-100-nm device technologies, nonvolatile memory devices, device characterization, and RF device modeling.

Byoung Hun Lee (SM’05) received the B.S. and M.S. degrees in physics from the Korea Advanced Institute of Science and Technology, Daejeon, Korea, in 1989 and 1992, respectively, and the Ph.D. degree in the electrical and computer engineering from the University of Texas at Austin in 2000. From 1991 to 2000, he was with Samsung Electronics. In 2000, he joined IBM, East Fishkill, NY, where he was a Lead Integrator of the 65-nm high-performance FEOL integration project. After managing the gate stack program for four years as an IBM assignee to SEMATECH, he became a Manager of emerging technology program with SEAMTECH in 2007. He also served as a Codirector of the FEP Transition Center jointly funded by SEMATECH and the Semiconductor Research Corporation during 2004–2006. Since 2008, he has been with the Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju, Korea. He has published more than 350 journal and conference papers in various areas of semiconductor technology. His current research focuses on the extremely low-power device technology using biologically inspired solid-state devices and materials, as well as conventional technologies such as advanced gate stack technology and high-performance logic device technology.

Dr. Lee is serving as a member of the technical committee for the Symposium on VLSI Technology, the International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), the International Conference on Solid State Devices and Materials (SSDM), and the IEEE international Integrated Reliability Workshop (IIRW) and served for several technology meetings such as the IEEE Semiconductor Interface Specialists Conference (SISC), the IEEE Reliability Physics Symposium (IRPS), IMRS, and the International Symposium on Advanced Gate Stack Technology (ISAGST).

Hyungcheol Shin (S’92–M’93–SM’00) received the B.S. (magna cum laude) and M.S. degrees in electronics engineering from Seoul National University, Seoul, Korea, in 1985 and 1987, respectively, and the Ph.D. degree in electrical engineering from the University of California, Berkeley, in 1993. From 1994 to 1996, he was a Senior Device Engineer with Motorola Advanced Custom Technologies. In 1996, he was with the Department of Electrical Engineering and Computer Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea. During his sabbatical leave from 2001 to 2002, he was a Staff Scientist with Berkana Wireless, Inc., San Jose, CA, where he was in charge of CMOS RF modeling. Since 2003, he has been with the School of Electrical Engineering and Computer Science, Seoul National University. He is also with the Inter-University Semiconductor Research Center, Seoul National University. He has published more than 450 technical papers in international journals and conference proceedings. He also wrote a chapter in a Japanese book on plasma charging damage and semiconductor device physics. His current research interests include Flash memory, DRAM cell transistor, nano-CMOS, CMOS RF, and noise.

Prof. Shin is a Lifetime Member of the Institute of Electronics Engineers of Korea (IEEE). He received the Second Best Paper Award from the American Vacuum Society in 1991, the Excellent Teaching Award from the Department of Electrical Engineering and Computer Sciences, KAIST, in 1998, the Haedong Paper Award from IEEE in 1999, and the Excellent Teaching Award from Seoul National University in 2005, 2007, and 2009. He is listed in Who’s Who in the World. He was a committee member of the International Electronic Devices Meeting. He also has served as a committee member for several international conferences, including the International Workshop on Compact Modeling and the International Conference on Solid State Devices and Materials (SSDM), and as a committee member of the IEEE Electron Devices Society Graduate Student Fellowship.

Jong-Ho Lee (SM’01) received the B.S. degree in electronic engineering from Kyungpook National University, Daegu, Korea, in 1987 and the M.S. and Ph.D. degrees in electronic engineering from Seoul National University, Seoul, Korea, in 1989 and 1993, respectively. In 1993, he was an Engineer with Seoul National University, working on advanced BiCMOS process development at the Inter-University Semiconductor Research Center (ISRC). In 1994, he was with the School of Electrical Engineering, Wookwang University, Iksan, Korea. From 1994 to 1998, he was with the Electronics and Telecommunications Research Institute, Daejeon, Korea, as an Invited Member of Technical Staff, where he worked on deep-submicrometer SOI devices, device isolation, 1/f noise, and device mismatch characterization. From August 1998 to July 1999, he was with the Massachusetts Institute of Technology, Cambridge, as a Postdoctoral Fellow, where he was engaged in the research on sub-100-nm double-gate CMOS devices. In 2002, he moved to Kyungpook National University as a Professor with the School of Electrical Engineering and Computer Science. Since September 2009, he has been a Professor with the School of Electrical Engineering and Computer Science, Seoul National University, where he is also with the ISRC. He is the author or a coauthor of more than 110 papers published in refereed journals and more than 210 conference papers related to his research. He is the holder of 65 patents. His research interests include sub-100-nm device technologies, nonvolatile memory devices, device characterization and dc/RF device modeling, device characterization, thin-film transistors, and integrated microsystems, including various sensors.

Dr. Lee was the recipient of the “This Month’s Scientist Award” in 2006 for his contribution in the development of practical high-density/high-performance 3-D nanoscale CMOS devices.